Large Characteristic Subgroups in Infinite Groups

Francesco de Giovanni

University of Napoli Federico II

Ischia Group Theory 2018 March 20th, 2018

Michio Suzuki October 2, 1926 – May 31, 1998

Michio Suzuki

Michio Suzuki in 1962

Lemma 21.1.4 of the book by Kargapolov and Merzlyakov 1971

Let G be a group containing an abelian subgroup of finite index. Then G has an abelian characteristic subgroup of finite index.

Mikhail I. Kargapolov (1928–1976) Yuriĭ I. Merzlyakov (1940–1995)

Proof

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

Proof

Let *A* be an abelian subgroup of finite index of *G*, and let *A*^{*} be the smallest characteristic subgroup of *G* containing *A*. Then there exist finitely many automorphisms $\theta_1, \ldots, \theta_n$ of *G* such that

$$A^* = \langle A^{\theta_1}, \ldots, A^{\theta_n} \rangle.$$

It follows that

$$A^{\theta_1} \cap \ldots \cap A^{\theta_n}$$

is contained in the centre of A^* , and so $Z(A^*)$ is an abelian characteristic subgroup of finite index of *G*.

Lemma 21.1.4 of the book by Kargapolov and Merzlyakov

Let G be a group containing an abelian subgroup A of finite index. Then G has an abelian characteristic subgroup B of finite index such that $[A, B] = \{1\}$.

Lemma 21.1.4 of the book by Kargapolov and Merzlyakov

Let G be a group containing an abelian subgroup A of finite index. Then G has an abelian characteristic subgroup B of finite index such that $[A, B] = \{1\}$.

Moreover, if |G:A| = n, the subgroup B can be chosen of index at most n^n .

Theorem 1.41 of Isaacs' book

Let G be a finite group containing an abelian subgroup of index n. Then G has an abelian characteristic subgroup of index at most n^2 .

Theorem 1.41 of Isaacs' book

Let G be a finite group containing an abelian subgroup of index n. Then G has an abelian characteristic subgroup of index at most n^2 .

Francesco de Giovanni and Marco Trombetti

Comm. Algebra 2018

*Let G be a group containing an abelian subgroup of finite index n. Then G has an abelian characteristic subgroup of index at most n*².

Brunella Bruno and Franco Napolitani Glasgow Math. J. 2004

Let G be a group containing a subgroup of finite index which is nilpotent of class at most k. Then G has also a characteristic subgroup of finite index which is nilpotent of class at most k.

Evgeny Khukhro and Natalia Makarenko J. London Math. Soc. 2018

Let G be a group containing a subgroup of finite index which is soluble of derived length at most k. Then G has also a characteristic subgroup of finite index which is soluble of derived length at most k.

A group class \mathfrak{X} is said to be *F*-characteristic if any group containing an \mathfrak{X} -subgroup of finite index has also a characteristic subgroup of finite index in the class \mathfrak{X}

A group class \mathfrak{X} is said to be *F-characteristic* if any group containing an \mathfrak{X} -subgroup of finite index has also a characteristic subgroup of finite index in the class \mathfrak{X}

Each of the following classes is *F*-characteristic:

- the class \mathfrak{A} of all abelian groups
- the class \mathfrak{N} of all nilpotent groups
- the class \mathfrak{N}_k of all nilpotent groups of class at most k
- the class \mathfrak{S} of all soluble groups
- the class S_k of all soluble groups of derived length at most k

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

• the class of all free groups

• the class of all free groups

 $G = F \times \langle a \rangle$

where F is free of countably infinite rank and a has prime order

- the class of all free groups
- the class of all torsion-free groups

- the class of all free groups
- the class of all torsion-free groups Swan's theorem: every torsion-free group containing a free subgroup of finite index is free

- the class of all free groups
- the class of all torsion-free groups
- the class of all free abelian groups

- the class of all free groups
- the class of all torsion-free groups
- the class of all free abelian groups

 $G = F \times \langle a \rangle$

where F is free abelian of countably infinite rank and a has prime order

- the class of all free groups
- the class of all torsion-free groups
- the class of all free abelian groups The only characteristic subgroups of a free abelian group F are the powers Fⁿ, with n ≥ 0

- the class of all free groups
- the class of all torsion-free groups
- the class of all free abelian groups
- the class of all simple groups

- the class of all free groups
- the class of all torsion-free groups
- the class of all free abelian groups
- the class of all simple groups

 $G = Alt(5) \times Alt(5)$

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

- the class of all quasihamiltonian groups
- the class of all groups with modular subgroup lattice

- the class of all quasihamiltonian groups
- the class of all groups with modular subgroup lattice

A group *G* is called *quasihamiltonian* if XY = YX for all subgroups *X* and *Y* of *G*.

- the class of all quasihamiltonian groups
- the class of all groups with modular subgroup lattice

A group *G* is called *quasihamiltonian* if XY = YX for all subgroups *X* and *Y* of *G*. It is known that a group is quasihamiltonian if and only it is locally nilpotent and has a modular subgroup lattice

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

A group *G* is said to be a *T-group* if normality in *G* is a transitive relation, i.e. if all subnormal subgroups of *G* are normal

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

A group *G* is said to be a *T-group* if normality in *G* is a transitive relation, i.e. if all subnormal subgroups of *G* are normal

Simple groups have the *T*-property

A group *G* is said to be a *T-group* if normality in *G* is a transitive relation, i.e. if all subnormal subgroups of *G* are normal

Simple groups have the *T*-property

The structure of soluble *T*-groups has been described by W. Gaschütz (1957) and D.J.S. Robinson (1964)

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

• Soluble *T*-groups are metabelian

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

• Soluble *T*-groups are metabelian

If *G* is a soluble *T*-group, every subgroup of G' is normal in *G*, and so *G* acts on G' as a group of power automorphisms

- Soluble *T*-groups are metabelian
- A finitely generated soluble *T*-group is either finite or abelian

- Soluble *T*-groups are metabelian
- A finitely generated soluble *T*-group is either finite or abelian
- Any finitely generated soluble *T*-group is a *T*-group, i.e. all its subgroups have the *T*-property

Some relevant properties of soluble *T*-groups

- Soluble *T*-groups are metabelian
- A finitely generated soluble *T*-group is either finite or abelian
- Any finitely generated soluble *T*-group is a *T*-group, i.e. all its subgroups have the *T*-property
- If *G* is any soluble *T*-group, all its subgroups containing *Fit*(*G*) are characteristic

Theorem

The class of periodic soluble T-groups is F-characteristic

Theorem

The class of periodic soluble T-groups is F-characteristic

Corollary *The class of locally soluble* \overline{T} *-groups is* F*-characteristic*

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

Let *G* be a soluble non-abelian *T*-group. Then:

• *G* is of *type* 1 if the centralizer $C_G(G')$ is not periodic

Let *G* be a soluble non-abelian *T*-group. Then:

• *G* is of *type* 1 if the centralizer $C_G(G')$ is not periodic In this case it turns out that *G* is abelian-by-finite

Let *G* be a soluble non-abelian *T*-group. Then:

- *G* is of *type* 1 if the centralizer $C_G(G')$ is not periodic
- *G* is of *type* 2 if *C*_{*G*}(*G*') is periodic but *G* contains elements of infinite order

Let *G* be a soluble non-abelian *T*-group. Then:

- *G* is of *type* 1 if the centralizer $C_G(G')$ is not periodic
- *G* is of *type* **2** if *C*_{*G*}(*G*′) is periodic but *G* contains elements of infinite order

There exists a metabelian group containing a subgroup of finite index which is a *T*-group of type 2 but no characteristic subgroup of finite index with the *T*-property

F. de Giovanni - Large Characteristic Subgroups in Infinite Groups

- The set of all elements of finite order is a subgroup
- The commutator subgroup is divisible

- The set of all elements of finite order is a subgroup
- The commutator subgroup is divisible
- If *X* is a subgroup of finite index of a soluble *T*-group of type 2, then *X* is also a *T*-group of type 2, and *X'* = *G'*

- The set of all elements of finite order is a subgroup
- The commutator subgroup is divisible
- If *X* is a subgroup of finite index of a soluble *T*-group of type 2, then *X* is also a *T*-group of type 2, and X' = G'
- If *G* is any group with a soluble subgroup *X* of finite index which is a *T*-group of type 2, then *X*′ is characteristic in *G*

- The set of all elements of finite order is a subgroup
- The commutator subgroup is divisible
- If *X* is a subgroup of finite index of a soluble *T*-group of type 2, then *X* is also a *T*-group of type 2, and X' = G'
- If *G* is any group with a soluble subgroup *X* of finite index which is a *T*-group of type 2, then *X'* is characteristic in *G*. Moreover, if *T* is the subgroup of all elements of finite order of *X*, also *T'* is characteristic in *G*

Theorem

Let G be a group containing a soluble subgroup X of finite index which is a T-group of type 2. If either X has finite torsion-free rank or X' has finite sectional rank, then G has a characteristic subgroup of finite index which is a T-group (of type 2)

Theorem

Let G be a group containing a soluble subgroup X of finite index which is a T-group of type 2. If either X has finite torsion-free rank or X' has finite sectional rank, then G has a characteristic subgroup of finite index which is a T-group (of type 2)

Corollary

The class of soluble T-groups of finite torsion-free rank is F-characteristic

Reinhold Baer Prize

The no profit association

AGTA — Advances in Group Theory and Applications

and

Aracne Editrice

announce every year an international prize of \in 1000 for a PhD thesis in group theory and its applications. The prize is dedicated to **Reinhold Baer** (1902–1979), great German algebraist who built an important school of group theory. The aim of the prize is to support the scientific activity of young researchers, regardless of their geographical origin.

Second Edition Deadline: June, 15th, 2018